Like the Eclipse Modeling Framework (EMF), the SERAPIS modeling tool is based on Eclipse and also introduces three meta-layers in its architecture.

Instead of Ecore, SERAPIS utilizes a proprietary meta-language that is not compliant to existing standards.

As a consequence, SERAPIS-based models cannot be integrated with other development tools which causes a vendor-lock.

Propose a strategy to bridge the SERAPIS technical space to EMF, allowing for model transformation in order to overcome the vendor-lock.

Provide an implementation with the purpose of evaluating the feasibility of the researched transformation approach.

The Ph.D. thesis by Manuel Wimmer [1] suggests to bridge metamodels between two different technical spaces as follows:

1. Establish a mapping between the elements of Meta-language A and Meta-language B.
2. Derive transformation rules from the mapping in order to generate Metamodel B'.
3. Apply heuristics to manually resolve ambiguities in the mapping.

This transformation approach is adapted to the technical spaces of SERAPIS and EMF, and extended with the capability to also generate models.

Directly mapping the SERAPIS meta-language to Ecore is not possible, so the SerapisEcore metamodel is designed to provide missing language features.

The meta-level lifting approach of EMF Profiles [2] is applied to lift the SerapisEcore metamodel to the level of a meta-language, allowing to extend Ecore.

The Metamodel Generator reads the SERAPIS metamodel and generates a new metamodel in Ecore according to the transformation rules derived from the correspondences of both meta-languages.

Applying the same basic principle, the Model Generator uses correspondences between the SERAPIS metamodel and the generated target metamodel to instantiate the model in Ecore.

Metamodel bridging [1] and meta-level lifting [2] are valuable approaches for bridging different technical spaces.

---